Прогнозирование финансовых рынков с использованием искусственных нейросетей


Аппроксимация прогнозируемых величин. Сглаженный шаблон максимальной прибыли


Рассмотрим перцептрон с одним выходным нейроном. Подавая на входы этого перцептрона любые числа x1, x2, ..., xn, получим на выходе значение некоторой функции F(x1, x2, ..., xn), которое является ответом (реакцией) сети. Очевидно, что ответ сети зависит как от входного сигнала, так и от значений ее внутренних параметров - весов нейронов.

Естествен вопрос: а может ли перцептрон реализовать достаточно сложную функцию? Этот вопрос, по своей сущности, математический - о представимости одних функций посредством других. Ученые занимались решением этой задачи долгое время и ответ был получен сравнительно недавно - в 1989 г. В результате продолжительных исследований несколькими учеными практически одновременно была сформулирована теорема, которая на языке нейросетей звучит так: «Любую непрерывную функцию нескольких переменных можно с любой точностью реализовать с помощью обычного трехслойного перцептрона с достаточным количеством нейронов в скрытом слое». Это означает, что с помощью стандартного перцептрона в принципе возможно решать любые задачи прогнозирования и оценки, в которых существуют функциональные зависимости. Здесь указывается «в принципе», так как теорема не указывает, каким способом можно подобрать веса каждого нейрона, используя набор примеров.

Если на рынке существуют функциональные зависимости, то успех решения задачи аппроксимации, кроме всего прочего, во многом будет зависеть от выбора прогнозируемой величины - обучающего правила. Рассмотрим пример формирования величины, достоверный прогноз которой позволял бы получать максимальную прибыль при торговле на рынке.

Как показано выше, в качестве обучающего правила можно взять MPP. Однако, MPP в чистом виде содержит дискретные данные, что делает задачу достаточно сложной. Кроме того, как показывает практика, для ведения оптимальной торговли, большую часть времени на рынке приходится ожидать возможности «войти в рынок». Построенная для такого рынка MPP будет содержать большое количество сигналов на «ожидание» покупки или продажи.


Начало  Назад  Вперед



Книжный магазин