Прогнозирование финансовых рынков с использованием искусственных нейросетей


Экономико-математические методы - часть 2


Среди прочих слоев имеется входной слой, на нейроны которого подается информация, а также выходной, с которого снимается результат. При прохождении по сети входные сигналы усиливаются или ослабляются, что определяется весами межнейронных связей. Перед применением нейросеть необходимо обучить на примерах - с помощью коррекции весов межнейронных связей, т.е. по известным входным параметрам и результату сеть заставляют выдавать ответ, максимально близкий к правильному. Проблему оценки постоянно изменяющихся внешних условий и соответственно степени влияния на рынок тех или иных параметров нейросеть решает в силу самого принципа работы.

Еще один метод, который используется для решения задач прогнозирования - нечеткая логика. Всем нам свойственно давать простые, хотя бы по форме, ответы на любые самые сложные вопросы. Но факт остается фактом: в своей массе, мы чувствуем себя комфортнее, облекая величины и понятия реального мира в обычную числовую форму и описывая взаимоотношения между ними однозначными функциями. При этом при развитии любого процесса всегда имеется только одна возможность, все величины имеют детерминистский характер. Подобно обычным числам, с распределениями нечеткости можно вести и производить определенные операции, например, складывать и умножать. В принципе, можно построить непротиворечивую алгебру нечетких распределений. С математической точки зрения некоторое неудобство доставляет тот факт, что практически все операции можно ввести неоднозначным образом. С середины 60-х годов, после разработки теории нечетких множеств, было предложено несколько теорий, позволяющих формализовать неопределенность. Эта область знания в настоящее время интенсивно развивается.




Начало  Назад  Вперед



Книжный магазин