Прогнозирование финансовых рынков с использованием искусственных нейросетей


Экономико-математические методы


Статистические методики включают в себя проверенные классические методы - регрессионный, корреляционный анализ и т.п. Однако работа с подобными системами для прогноза оперативно меняющейся внутридневной информации для неспециалиста (человека без образования в области статистики) сопряжена с некоторыми трудностями, как при выборе метода анализа, так и при трактовке результатов. Это представляется довольно существенным недостатком, поскольку скорость прогноза внутридневного хода торгов очень важна.

Эволюционное программирование - сегодня является довольно динамично развивающимся направлением анализа данных. Идеей метода является запись предварительных гипотез на некотором внутреннем языке программирования. Далее система находит программу, максимально точно выражающую искомую зависимость, и начинает самостоятельно ее корректировать, после чего из множества модифицированных программ отбирает наиболее удачную. При всей перспективности методики оперативный прогноз не является ее сильной стороной, да и программная реализация эволюционного программирования пока еще не совершенна.

"Деревья решений" - метод весьма условно может быть отнесен к системам прогноза быстро меняющихся финансовых показателей, являясь скорее системой классификаций. Однако для анализа оперативных финансовых потоков малопригоден.

Генетические алгоритмы - этот метод весьма успешно используется для решения комбинаторных задач, а также задач поиска оптимальных вариантов. Кратко схему метода можно описать как выбор лучших решений по ранее формализованным критериям, при этом процесс оптимизации напоминает естественную эволюцию - отбор лучших, скрещивание и мутации. Но у метода есть ряд недостатков, например сложность формализации критериев отбора. Кроме того, в целом методика оптимизирована на класс задач, несколько отличающийся от прогноза оперативно меняющихся финансовых показателей.

Сегодня все больше операторов используют в своей деятельности искусственные нейронные сети. Сама нейросеть, как правило, представляет собой многослойную сетевую структуру однотипных элементов - нейронов, соединенных между собой и сгруппированных в слои.


Начало  Назад  Вперед



Книжный магазин