Прогнозирование финансовых рынков с использованием искусственных нейросетей

Tk-3100 - Тонер-картридж для принтеров смотрите на kyoshop.ru. |

Классификация рыночных ситуаций. Шаблон максимальной прибыли - часть 3


рис. 2.9). Стрелками на рисунке отмечены моменты, в соответствии с сигналами MPP потенциально пригодные для торговли (покупки и продажи соответственно).

На исторических данных моделирование торговли показывает максимальную прибыль, однако у «правого края» графика невозможно продлевать MPP, поскольку цены будущих периодов неизвестны (задача как раз и состоит в том, чтобы их прогнозировать). Однако сигналы MPP могут оказаться полезными, например в качестве обучающего правила для ИНС.

В рассмотренных источниках встречаются постановки задач обучения ИНС, в которых брались заведомо неоптимальные правила для обучения, однако, по утверждению авторов, они добивались положительных результатов. Например, некоторые исследователи в качестве обучающего правила использовали значения, рассчитанные методом пересечения скользящих средних (Crossing Moving Averages - СMA) [1], в то время как известно, что торговля по такому правило редко приносит прибыль.

Рис. 2.9. График динамики курса евро/доллар (вверху), сигналы MPP

(внизу - синяя линия), усредненное значение MPP (внизу - красная линия).

Идея состоит в том, чтобы обучить ИНС так, что на входной образ она будет реагировать сигналом: «покупать», «продавать» или «ждать», таким образом, ИНС будет работать как классификатор рыночных ситуаций и тот факт, что в качестве обучающего правила будет использоваться MPP, дает шанс надеяться на очень хорошие результаты.

Далее предстоит решить задачу кодирования обучающего правила таким образом, что бы максимально упростить процесс обучения (правильное кодирование ожидаемых значений - один из залогов успешного обучения). Из всех статистических функций распределения, определенных на конечном интервале, максимальной энтропией - оценкой информационной насыщенности - обладает равномерное распределение. Применительно к данному случаю, это подразумевает, что кодирование переменных числовыми значениями должно приводить, по возможности, к равномерному заполнению единичного интервала закодированными примерами (захватывая и этап нормировки) .При таком способе кодирования все примеры будут нести примерно одинаковую информационную нагрузку.

Исходя из этих соображений, можно предложить следующий практический метод кодирования ординальных переменных (см. рис. 2.10). [37]. Единичный отрезок разбивается на n отрезков - по числу классов - с длинами пропорциональными числу примеров каждого класса в обучающей

Рис. 2.10. Иллюстрация способа кодирования ординальных переменных с учетом количества примеров каждой категории.

выборке: Dx = Pk/P, где Pk - число примеров класса k, а P - общее число примеров. Центр каждого такого отрезка будет являться численным значением для соответствующего ординального класса.




Начало  Назад  Вперед



Книжный магазин