Прогнозирование финансовых рынков с использованием искусственных нейросетей


Классификация рыночных ситуаций


В двух предыдущих опытах в качестве прогнозируемой величины была использована величина сглаженного MPP, другим словами решалась задача нелинейной регрессии при помощи ИНС. Фактически предпринималась попытка при помощи комитета нейроэкспертов получить максимально приближенную к «идеальной» кривую. Однако, как упоминалось выше, нейронные сети могут быть использованы также в качестве классификатора, необходимо лишь правильно закодировать значения классов.

Рассмотрим процедуру кодирования желаемых выходных значений в обучающей выборке, в соответствии с сигналами MPP для динамики курса евро/доллар в 1999 году. Общее количество образов в обучающей и тестовой выборке 6328. Практический метод кодирования был рассмотрен в подразделе 2.3.1. При кодировании обучающего правила, в первую очередь, необходимо выполнить подсчет количества образов для каждого из классов. На рисунке 2.22 в виде гистограммы показано распределение сигналов по классам в обучающей выборке. Рассчитанные таким образом длины отрезков составили:  Dx1 = 0,1473; Dx2 = 0,4550; Dx3 = 0,2841; Dx4 = 0,1136. На основании рассчитанных длин интервалов можно вычислить значения, соответствующие ординальным классам: x1 = 0,0736; x2 = 0,3748; x3 = 0,7443; x4 = 0,9432. Эти значения можно использовать в качестве обучающего правила для ИНС.

Цель опыта: сформировать комитет нейроэкпертов, который бы решал задачу классификации рыночных ситуаций (на основе MPP) по сигналам индикаторов технического анализа, базирующихся на часовой динамике курса евро/доллар. Входная информация: значения индикаторов ТА. Выходная информация: значения классов образов: «Покупка», «Продажа», «Ожидание».

Рис. 2.22. Распределение ожидаемых значений при постановке задачи классификации рыночных ситуаций по сигналам MPP (евро/доллар 1999 г.)

В рамках решения поставленной задачи было обучено 21 ИНС (результаты обучения см. в приложении 1). Для обучения нейросетей был использован метод, базирующийся на генетических алгоритмах, что сказалось на качестве обучения.


Начало  Назад  Вперед



Книжный магазин