Прогнозирование финансовых рынков с использованием искусственных нейросетей


Концептуальная схема системы прогнозирования - часть 2


Часть параметров в системе может задаваться в виде диапазона и шага, с которым этот диапазон необходимо пройти. В процессе работы система сама сможет выбирать значения из диапазона значений параметров, которые наилучшим способом соответствуют решению задачи. Это значит, что системой сможет пользоваться не только опытный специалист в области нейросетей, но и новичок. Разница между ними будет заключаться только в том, что новичок будет задавать большие диапазоны значений и меньший шаг, т.е. на решение задачи будет расходоваться больше машинного времени. По мере продвижения новичка в предметной области и приобретения им опыта использования программы, он будет точнее задавать параметры системы, обрабатывая больше моделей за единицу рабочего времени.

Как показывает практика, значительную часть технологического цикла решения прогнозных задач с применением нейронных сетей занимает подготовка массива входных данных. Через интерфейс модулей загрузки данных из внешних источников, обработки данных, формирования обучающих и тестовых множеств система получает и обрабатывает данные

о финансовых показателях. Учитывая специфические особенности

системы, данные должны поступать в виде временных рядов. Формируемые модулем   обучающие   и   тестовые   множества   должны   быть   адекватны

Лист оставлен под концептуальную схему прогнозирования (рис. 2.30)


решаемой задаче, т.е. множество входных данных должно обеспечивать не только сходимость процесса обучения, но и точность прогнозирования. Описанные обстоятельства подводят к выводу о том, что в модуль формирования входных множеств необходимо включить оптимизационные алгоритмы.

Модуль торговых стратегий (проектов) должен позволять описывать правила торговли пользователя. При построении торговой стратегии необходимо обеспечить возможность использования лимитных и/или стоп-приказов, учитывать комиссионные, маржу и проскальзывание. Проверка торговой стратегии, использующей правила, нейросетевые предсказания и индикаторы, должны проводиться на исторической базе данных системы.


Начало  Назад  Вперед



Книжный магазин