Прогнозирование финансовых рынков с использованием искусственных нейросетей


Концептуальная схема системы прогнозирования - часть 3


Моменты покупки/продажи могут отображаться на графике, чтобы у пользователя была возможность уже при тестировании торговой системы понять, насколько прибыльна ее работа. Система должна поддерживать возможность проверки на исторических данных любой торговой системы, в том числе и системы, построенной без использования нейромоделей.

Модуль формирования комитета совместно с модулем оптимизации нейронных сетей обеспечивают формирование такой выборки нейросетей, которая обеспечивает наилучшие результаты при прогнозировании.

Такой отбор может производиться по следующей схеме. Среди множества обученных конфигураций нейросетей проводится отбор победителей на двух этапах по критерию надежности. Первый отбор сетей-кандидатов

для решения прогнозной задачи происходит на этапе их обучения, второй - на этапе применения. Процентное соотношение отобранных на этапе обучения нейроэкспертов к общему числу обученных сетей-кандидатов может доходить до 1%. Т.е. в комитет может попадать, например,

только каждая сотая нейросеть. Прогноз строится системой на основе линейной комбинации лучших отобранных из комитета на этапе применения нейроэкспертов.

Задача обучения возлагается на модуль обучения нейросетей. Как показывает практика, для того, чтобы нейронная сеть смогла отыскать зависимости во временном ряде, необходимо использовать передовые алгоритмы обучения. Хорошие результаты сегодня показывают методы обучения, базирующиеся на генетических алгоритмах.

В модуле интерфейса пользователя реализовывается обеспечение работы пользователя с системой. Рассмотрим технологическую цепочку работы с предложенной системой прогнозирования.

На первом шаге пользователь создает проект (торговую систему, стратегию), при помощи встроенных возможностей описывает ее, устанавливает ключевые параметры. В тех местах, где в системе предполагается использовать прогнозы нейронных сетей, настраиваются модели прогнозирования.

На втором этапе для каждой модели прогнозирования настраиваются параметры модулей, связанных с процессом обучения нейроэкспертов и получения результатов: какие данные требуются, где они могут быть найдены, шаблоны преобразования входных и выходных величин, параметры алгоритма обучения, настройки оптимизации модели и т.п.


Начало  Назад  Вперед



Книжный магазин