Прогнозирование финансовых рынков с использованием искусственных нейросетей


Постановка задачи прогнозирования финансовых рынков с использованием искусственных нейросетей


Как было отмечено в подразделе 1.3.5, задача прогнозирования с использованием ИНС сводится к задаче аппроксимации многомерных функций, т.е. к задаче построения многомерного отображения. В зависимости от типа выходных переменных, аппроксимация функций может принимать вид:  классификации  или регрессии. В задаче прогнозирования финансовых рынков можно выделить две крупные подзадачи: построение модели, обучение нейронных сетей реализующих решение задачи (т.е. фактически построение аппарата отображения).

В результате изучения предметной области исследователем должна быть разработана модель прогнозирования, ключевыми составляющими которой должны быть: набор входных переменных; метод формирования входных признаков x; метод формирования обучающего правила y; архитектура нейросети (ей); метод обучения нейросети (ей).

Для решения задачи прогнозирования необходимо найти: такую нейронную сеть или комитет нейроэкпертов, который бы наилучшим образом строил отображение F: xÞy, обобщающее сформированный на основе ценовой динамики набор примеров {xt, yt}. Поиск такой нейронной сети или комитета нейроэкспертов осуществляется при помощи одного или нескольких алгоритмов «обучения».

Здесь можно заметить, что нейросетевое моделирование в чистом виде базируется лишь на исходных данных (временном ряде).

Нейронные сети можно применять для одномерного и многомерного анализа, должным образом сформировав множество независимых входов и зависящих от них выходов. Как правило, модель строится для того, чтобы предсказывать значения временного ряда для одной целевой переменной, однако, в принципе, модель может предсказывать значения и нескольких переменных (например, доходы по акциям на различное время вперед), если в сеть добавить дополнительные выходные элементы.

При этом, однако, исследования в области прогнозирования  временных рядов при помощи сетей продолжаются и в настоящее время, и никаких стандартных методов здесь пока не выработано. В нейронной сети многочисленные факторы взаимодействуют весьма сложным образом, и успех пока приносит только эвристический подход.


Начало  Назад  Вперед



Книжный магазин