Прогнозирование финансовых рынков с использованием искусственных нейросетей

Смотрите www.spiderman-games.ru игры человек паук для мальчиков. |

Прогнозирование максимального и минимального уровней цены на один период вперед - часть 2


а) задача прогнозирование изменений максимальной цены  - JPY_high;

б) задача прогнозирование изменений минимальной цены - JPY_low.

Каждая из сетей содержала один внутренний слой, содержащий 15 нейронов, общее количество синапсов составило 160. Обучение производилось с использованием метода генетической оптимизации. После обучения было произведено тестирование на проверочном множестве, построенном на базе дневной динамики курса доллар/йена в январе 2000 г.

По результатам тестирования рассчитаем некоторые показатели работы ИНС, характеризующие качество прогнозирования (см. рис. 2.29):

а) 0,4204 - среднее отклонение прогнозируемой максимальной цены от фактической;

б) 0,4009 - среднее отклонение прогнозируемой минимальной цены от фактической;

в) 77,27% - верно предсказанных направлений изменения максималь­ной цены дня;

г) 72,73% - верно предсказанных направлений изменения минималь­ной цены дня.

По результатам тестирования можно сделать следующие выводы. Отклонения прогнозируемых значений цены от фактических укладываются в норму стандартного уровня «стоп-лосс» для торговли на курсе долар/йена внутри дня. Полученная модель имеет потенциал для роста точности прогнозов, предположительно за счет использования дополнительной входной информации.

Рис. 2.29. Результаты тестирования модели предсказания максимальной и минимальной цен дня на проверочном множестве января-февраля 2000 года.




Начало  Назад  Вперед



Книжный магазин